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A Mean-Field Equation of Motion for the 
Dynamic Ising Model 
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A mean-field type of approximation is used to derive two differential equations, 
one approximately representing the average behavior of the Ising model with 
Glauber (spin-flip) stochastic dynamics, and the other doing the same for 
Kawasaki (spin-exchange) dynamics. The proposed new equations are com- 
pared with the Cahn Allen and Cahn-Hilliard equations representing the same 
systems and with information about the exact behavior of the microscopic 
models. 
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1. I N T R O D U C T I O N  

Partial differential equat ion models such as the Cahn-Al len  (j/ and 
Cahn-Hi l l ia rd  (2) equat ions have been used with great success as represen- 
tations of the broad  characteristics of kinetic phase-transit ion phenomena,  
such as spinodal decomposit ion.  The Cahn-Hi l l ia rd  equat ion also gives (4/ 
quantitative predictions of the scaling functions which have been found to 
encapsulate the time dependence of the structure function and the pair 
distribution in the late stages of spinodal decomposit ion.  

There are, however, some theoretical difficulties associated with these 
equations [which are exhibited below as Eqs. (27) and (28)]. One is that  
the equat ions contain a function, normally interpreted as the thermo- 
dynamic  free energy density, which is a nonconvex function of the 
magnet izat ion or  the density, in violation of the general theorem .[(3.4.4) 
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of ref. 10], that the free energy function must be convex. Moreover, as we 
shall see in Section 5, this interpretation is incompatible with the exact 
microscopic dynamics of the kinetic Ising model. Another difficulty, if the 
equations are to be used for quantitative predictions, is that they contain 
a rate parameter for which there is no obvious microscopic theory. 

The purpose of this paper is to propose a different type of equation, 
which avoids some of these difficulties and which can be derived from a 
microscopic model, namely the kinetic Ising model, by the use of a 
well-defined approximation. This approximation is closely related to the 
mean-field theory of the equilibrium properties of this Ising model. 

2. D E R I V A T I O N  OF T H E  E Q U A T I O N S  

Consider an Ising model on a lattice A, and denote the spin at site 
a~A by sa (so that s~= +_1 for all a~A). We assume nearest-neighbor 
interactions so that the energy of a configuration s = {sa, a ~ A } is 

W(s) :  - 2 Z Jabsos  (1) 
a b 

where Jab is the Ising interaction between sites a and b. For simplicity we 
shall assume throughout that Jab/>0, although much of the discussion 
applies to other cases as well. 

We shall consider two different kinds of stochastic dynamics: the 
spin-flip dynamics of Glauber, (5) in which each spin has a probability per 
unit time wa(s) of reversing its sign, and the spin-exchange dynamics of 
Kawasaki, (6) in which, for each nearest-neighbor pair ab of sites, there is a 
probability wab(s) per unit time that the spins at the two sites will change 
places. If a, b are not nearest neighbors, we take wab = 0. 

We denote expectations by the symbol E. For  Glauber dynamics the 
expectation of sa obeys (5) the time evolution law 

d 
dt E(s~) = -2E(s~ w~) (2) 

For Kawasaki dynamics the corresponding law is 

d 
= E[(sb--so) wobl (3) ~ E(Sa) b e N ( a )  

where N(a) means the set of sites that are nearest neighbors of site a. 
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The choice of the transition rates wa and wab is to some extent 
arbitrary, but on general principles they should satisfy the detailed balance 
conditions 

w,( s ) e-~W(s) = wa( s a) e - ~w(s~) (4) 

wah(s) e r Wab(Sab) e-~W(Jb) (5) 

where p is the inverse temperature, s a is the configuration obtained from s 
by reversing s a [so that (sa)b = s b if a r b, but = - s  b if a = b], and s ab is 
the configuration obtained from s by interchanging s, and sb [so that 
(sab)c=s ~ if cCa ,  b, but = s  b if c=a,  and =s~ if c=b] .  

A convenient choice of transition rates satisfying detailed balance is 
Glauber's (5) hyperbolic tangent rule 

w(s) = �89 1 - tanh[�89 W(s)] } (6) 

where 6 W(s) is the increase in energy brought about by the transition and 
the unit of time is chosen so that w(s)--, 1 as 3W(s)--* - ~ .  More specifi- 
cally, for Glauber dynamics the w on the left of (6) means w~ and 6W is 
given by 

~ w ( s )  = W(s  ~) - W(s )  

=2Sa 2 JabSb b y ( l )  (7) 
b ~ a  

For Kawasaki dynamics, the w means w~b and 6 W is given by 

W(s)  = w ( s %  - w(s)  

= ( s . - s b )  ~ (Jo~-Jb~)s~ b y ( l )  (8) 
c ~ a , b  

However, in this case the formula (6) for w applies only if a and b are 
nearest neighbors; if they are not, we take w~b = 0. 

The general solution of the detailed balance condition is a formula like 
(6) with the right-hand side multiplied by an arbitrary even function of 
6W(s) which approaches 1 as 6W(s)---, -oo .  For example, the Metropolis 
probability rule (7) can be obtained by multiplying the right-hand side of (6) 
by 1 + e x p ( - f l  IbW(s)l). In the present paper, however, only the hyper- 
bolic tangent rule (6) will be used. 

Substitution of (6) into the time evolution law for Glauber dynamics, 
Eq. (2), gives 

[ ( )] ~ E ( s ~ ) = - E ( s ~ ) + E  s~tanh fls~ ~ J~bsb 
b r  

= - E ( s ~ ) + E ( t a n h  ra) since s~=2 1 (9) 
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where we have defined 

r ,= ~ flJ~bsb (10) 
b C a  

For Kawasaki dynamics the corresponding result, from (6) and (3), is 

d 
E ( S a )  = ~ N ~  

where 

c ~ a , b  

=�89188 ~ fl(J~c-Jbc) sc]} 
c ~ a , b  

[since s~ - s b = +2 or 0] 

= �89 -- so) + �89 - sash) tanh[r~ - r b + flJab(Sa -- Sb)] } (12) 

with r defined as in (10). 
In order to turn (9) or (12) into a closed equation for E(s~) we need 

an approximation for the expectation involving a hyperbolic tangent. The 
approximation we shall use is motivated by consideration of the limiting 
case where the interaction is very weak and of very long range; in this limit, 
equilibrium mean-field theory becomes exact/s) For this case, the quantity 
ra defined in (10) is the sum of a large number of contributions from many 
different parts of the system. Assuming that the fluctuations of these con- 
tributions about their mean values are independent, so that a law of large 
numbers applies, then the fluctuations of r~ about its mean value will be 
small, so that in the limit E(tanh r , ) = t a n h  E(ra). Our approximation, 
which may be expected to be the more accurate the more nonvanishing 
terms there are in the sum (10) for ra, is thus to replace E(tanh ra) by 
tanh E(ra) in (9), This gives the following approximate kinetic equation, for 
Glauber dynamics with the hyperbolic tangent rule: 

d 
E(s.) = -E(sa )  + tanh E(r.)  (13) 

This equation may be written 

d u  a 

dt 
- --ua + tanh va (14) 
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where u. means E(s~) and v. is defined by 

~o=E(ro)= 2 PJ~ (is) 
b ~ - a  

In the special case where ua is independent of a, Eq. (14) reduces to the 
mean-field equation of Suzuki and Kubo. (11) 

For  Kawasaki dynamics the corresponding approximation is to 
replace the argument of the tangent in (12) by its expectation; however, the 
resulting approximate kinetic equation still involves E(sasb), and so a 
further closure approximation is necessary. The simplest such approxima- 
tion is 

E(s~ ~- E(s~ E(sb) (16) 

and it leads to the approximate kinetic equation 

du a 1 

dt 2 ~ b E N ( a )  

{(Ub--U,)+(1--UbUa)tanh[va--Vb+~J,b(Ua--Ub)]} (17) 

with u a and va defined as before. 
The two approximate kinetic equations (14) and (17) are the core of 

this paper. 

3. THE L Y A P U N O V  P R O P E R T Y  

One of the attractive features of the Cahn-Allen and Cahn Hilliard 
equations is that for each of them the free energy functional is a Lyapunov 
functional, that is, it decreases monotonically with time. This corresponds 
to what we expect on physical grounds, and is also useful for deducing 
mathematical properties of the solutions of the equation, such as their 
approach to equilibrium as t--* oo. 

The approximate kinetic equations derived in Section 2 also have a 
Lyapunov function, which may also be interpreted as a free energy. In the 
case of Glauber dynamics, the Lyapunov function is the following expres- 
sion, which can be interpreted as a mean-field approximation to the free 
energy: 

1 
F~{u}=fl t Z g ( u a ) - ~ 2  Jabu.ub (18) 

a a b 

where g is defined by 

g(u) = �89 + u) log(1 + u) + �89 - u) log(1 - u) (19) 
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From these definitions it follows that the derivative of g is 

g'(u) = arc tanh u 

and that 

(20) 

eFG 
fi ~ = arc tanh u a - v. (21) 

with v a defined as in (15). 
To prove the Lyapunov  property of our approximate kinetic equation 

(14) for Glauber  dynamics, we calculate the time derivative of FG, using 
(14) and (21). We obtain 

dF~ OF dua 

= - ~ (arc tanh u~ - G)(u~ - tanh G)  
a 

~< 0 (22) 

since arc tanh u - v and u - tanh v necessarily have the same sign. 
In the Kawasaki  case a Lyapunov  function exists provided that Jab 

takes the same value, call it J.n, for all nearest-neighbor pairs Jab. This 
Lyapunov  function is 

1 
FK = r ~  -- ~ J . .  Z u2 (23) 

a 

The time derivative of this function can be written, using (11), 

dE K ~ OFK ~ OFK 

b e N ( a )  

1 (OF K OFK~ 
= - - ' ~  Z \OUa -~u~jlab since I b a = - - l a b  (24) 

a b e N ( a )  

The approximat ion used in (17) for lab now gives, if we define 

W a : V a q -  f l J n n U a ,  

dFK 1 
fl dt = - ~ Z  ~ [g'(Ua)--Wa--g'(Ub)+Wb~ 

a b e N ( a )  

x [u~ - Ub -- (1 -- U~Ub) tanh(w~ - Wb)] 

= - - ~  Y~ (1--U~Ub)[g'(u~)--g'(Ub)--Wa+Wb~ 
a b ~ N ( a )  

x { tanh[g ' (u~)  - g'(ub) ] -- tanh(w~ - wb)} 

~o (25) 
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by (20), since x - y  and tanh x - t a n h y  always have the same sign. In the 
penultimate line we have used the addition formula for hyperbolic tangents. 

4. T H E  D I S C R E T E  C A H N - A L L E N  A N D  C A H N - H I L L I A R D  
E Q U A T I O N S  

For comparison purposes, it is useful to have discrete analogues of the 
Cahn-Allen and Cahn-Hilliard equations. These equations are normally 
obtained from the continuous-space free energy functional 

f {f(u(x)) + le[Vu(x)]2} d3x (26) F =  

where f is the free energy per unit volume and ~ is a constant. The 
Cahn-Allen equation is 

8u 6F 
M - -  M{ f ' (u ) - eV2u}  (27) 

8t - 6u(x) - 

where M is a rate constant and ~$F/6u(x) denotes a functional derivative. 
The Cahn-Hilliard equation is 

8uSt= M V 2 6F~u = MV2 { f '(u) - ~V2u } (28) 

The free energy formula (26) has a discrete analogue 

F ~ E f ( u ~ ) + � 8 8  E (u~-ub) 2 
a a b e N ( a )  

=Z[f (ua)+�89189  ~, uau b (29) 
a a b ~ N ( a )  

where z is the coordination number of the lattice. By applying the discrete 
analogue of the recipe used in (27) to this free energy function, we obtain 
a discrete analogue of the Cahn Allen equation: 

dt b e N(a) 

Likewise, by applying the discrete analogue of the recipe used in (28) we 
obtain a discrete analogue of the Cahn Hilliard equation 

dt = M  ~, 
b e N ( a )  

~ M E 
b E N ( a )  L c ~ N ( b )  c ~ N ( a )  3 

822/63/5-6-12 
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The correspondence between Eqs. (30) and (31) on the one hand and 
our approximate kinetic equations (14) and (17) on the other becomes par- 
ticularly close if we arrange for the corresponding Lyapunov functions, 
(29) on the one hand and (18) and (23) on the other, to be the same. To 
do this we choose nearest-neighbor interactions with Jn, = e and take the 
free energy per site to be 

f (u)  = ~ l g ( u ) -  lzeu2 (Glauber dynamics) (32) 

f (u)  = fl l g ( u ) -  �89 + 1) eu 2 (Kawasaki dynamics) (33) 

With the use of the free energy formula (32), the discrete Cahn-Allen 
equation (30) now becomes 

dua = - M  ~?FG = -/3 - 1M(arc tanh ua - vu) (34) 
dt Oua 

By way of comparison, if we were to set M = fi and replace each of the two 
terms on the right side of (34) by their hyperbolic tangents, we would get 
the approximate kinetic equation (14). 

Likewise, using (33) in the discrete Cahn-Hilliard equation (31), we 
get 

dUO --1 
~t =fl  M ~ [g'(ub)--g'(u~)--Wb+W~] (35) 

b ~ N ( a )  

where wa = Va + Jnnua as before. If we were to set M = ill2, insert a factor 
(1 - uaub), and replace g ' ( u b )  - -  g ' (Ua)  and - wb + w~ by their hyperbolic 
tangents, we would get (17). 

5. S O M E  C O M P A R I S O N S  

As the approximate kinetic equations (14) and (17) are being put 
forward here as possible improvements on the Cahn-Allen and Cahn-  
Hilliard equations, we would like to compare the accuracy of the two 
types of equation as representations of the true behavior of the kinetic 
Ising model. In order to compare like with like, we shall compare with the 
discrete Cahn-Allen and Cahn-Hilliard equations (30) and (31) rather 
than the original partial differential equations. 

Consider first of all the equilibrium solutions. These can be obtained 
by minimizing the Lyapunov functions (18) and (23); therefore, provided 
we use the appropriate correspondence from (32) and (33) when choosing 
f(u),  the equations compared will have the same Lyapunov functions and 
therefore the same equilibrium solutions, whatever boundary conditions 
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are imposed. In the case of Glauber dynamics this makes good sense, 
because the free energy expression (32) we use in the approximate 
Cahn-Allen equation is precisely the free energy expression given by 
mean-field equilibrium theory. For the Kawasaki case, however, the situa- 
tion is a little different: this time, to make the equilibrium solutions agree 
we must use the free energy expression (33), which is not the same as the 
mean-field approximation to the true free energy density. Although even 
the correct mean-field approximation is not particularly accurate, especially 
at low dimension numbers, the appearance of a free energy density which 
does not follow from any recognized approximate equilibrium theory is a 
defect. This defect presumably arises from the simplifying approximation 
(16), which at low temperatures is not a good one. 

Consider now the simplest nonequilibrium case, namely infinite tem- 
perature ( f l=0) .  In this case the exact kinetic equations are, by (9) and 
(11), (12), 

dua 

dt 
- -  - - u a  (Glauber dynamics) (36) 

du a 1 
dt - 2  ~ (Ub--Ua) 

b ~ N(a)  

(Kawasaki dynamics) (37) 

Our approximate kinetic equations (14) and (17) agree precisely with these 
exact equations when fl = 0. The discrete Cahn-Allen and Cahn-Hilliard 
equations (30) and (31), on the other hand, give in the high-temperature 
limit 

d•a - -  = - M  o arc tanh ua (Glauber) (38) 
dt 

d_~u~ M dt - o ~ (arc tanh ub-arc tanh ua) (Kawasaki) (39) 
b E N(a )  

where M o = l i m ~  o fi-~M, since the asymptotic form o f f ( u )  at high tem- 
peratures is the ideal lattice-gas form f (u)=fl- lg(u)  with g(u) as in (19). 

The discrete Cahn-Allen and Cahn-Hilliard equations can of course 
be saved in this case by relaxing the condition that f be the free energy per 
site and choosing instead f (u)= u2/2M. Indeed, it is a common practice 
among users of these equations to take f to be a polynomial (see, for 
example, refs. 3 and 9), but for a lattice system this form for f(u), with u 
capable of all real values instead of being restricted to the interval [ - l ,  1 ], 
seems more appropriate to a continuous-spin model than to the Ising 
model. 
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For finite temperatures it is not possible (apart from one special case, 
which we consider below) to solve the exact kinetic equation (9) or (11), 
(12), but we can obtain an inequality which leads to similar conclusions 
about the comparison we are considering here. For Glauber dynamics, the 
exact equation (9) implies 

dUa + u a 

dt b r  

~< tanh fl Y' Jab 
b~-a 

<.1 (40) 

Our approximate kinetic equation (14) is consistent with (40), whereas the 
discrete Cahn-Allen equation is consistent with it only if 

[ f ' (u)l  ~< 2/M+ 2flze (41) 

[a condition derived by substituting for dua/dt from (30) into (40) and 
using the fact that ua and ub are ~< 1 ]. Once again we have an inconsistency 
with the interpretation of f(u) as the free energy per site, since under that 
interpretation f '(u) is the chemical potential and tends to _+ oe as u tends 
to +1. 

A similar argument applies in the case of Kawasaki dynamics, for 
which the exact kinetic equation (11), (12) implies 

duo ~ l(ua--Ub) <~Z (42) 
"-~- + b~ N(a) 2 

where z is the coordination number of the lattice. This inequality is 
consistent with (17), but taken together with the discrete Cahn-Hilliard 
equation (31), it implies (for nearest-neighbor interaction strength Jnn = ~) 

b~(a)~,, [ f ' ( u a ) - f ' ( u b ) ]  ~< 2z(1/M+ 2ze) (43) 

To see that this last inequality is inconsistent with the interpretation of 
f(u) as free energy per site, consider any lattice--such as the simple 
cubic--whose sites can be colored, as on a chessboard, in such a way that 
every nearest-neighbor pair consists of one site of each color, and take ua 
to be + u if a is a "black" site and - u  if b is "white" site, where u is a 
number to be chosen. Then (43) becomes 

12zf'(u)l <~ 2z(1/M + 2ze) (44) 

which like (41) is inconsistent with the requirement l im,~ _+~ f ' (u)= +oo. 
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There is one further test to which these kinetic equations can be 
subjected, and neither comes out of it well. The test is to apply them to 
Glauber's ~5~ exactly soluble model, the one-dimensional Ising chain with 
nearest-neighbor interactions. For this model, since ra can now take only 
the values +2/~Jnn and 0, Eq. (9) reduces exactly to 

dua tanh(2/~J~,) 
dt - - u ~  + 2flJn~ va (45) 

Our approximate kinetic equation (14) agrees with this only in the high- 
temperature limit, and the discrete Cahn-Allen equation agrees with it only 
if we make f ( u )  proportional to u 2, which, for the reasons already 
explained, is inconsistent with the thermodynamic interpretation of f (u ) .  

A practical disadvantage afflicting our kinetic equations (14) and (17) 
and the discrete Cahn-Hilliard and Cahn-Allen equations equally, but not 
the original continuous-space Cahn-Hilliard and Cahn-Allen equations 
(27) and (28), is that if the lattice being considered has a very large number 
of sites, then the number of differential equations to be solved is very large. 
A possible way to overcome this would be to use instead the partial 
differential equation to which it is the discrete approximation, obtained (in 
the case of nearest-neighbor interactions on a square or simple cubic lattice 
with unit spacing) by replacing the definition (15) of va by 

va = flJ,~(zu~ + V2u~) (46) 

The resulting nonlinear partial differential equation, containing a hyper- 
bolic tangent of a space derivative, is of a very unusual type. 

To conclude, the approximate kinetic equations proposed here differ 
from the Cahn-Hilliard and Cahn-Allen equations in that they can be 
derived directly from a macroscopic model, contain no adjustable 
parameters or functions, and avoid the difficulties of interpreting the 
function f ( u )  which are associated with the latter equations. They seem 
well worth further investigation. 
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NOTE A D D E D  IN P R O O F  

Another way of converting our kinetic equations into a partial dif- 
ferential equation is to look for solutions in which ua varies only very 
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slowly from one lattice site to the next. For  example, in the case of 
Kawasaki  dynamics we may look for solutions of Eq. (17) in the form 
ua(t) = U(ra/L,  t /L  2) where ra is the position vector of lattice site a and 
L is a parameter  representing the length scale for variations of ua. Then, 
writing R for ra iL  and T for t / L  2, and taking the limit where L becomes 
very large we obtain as the limiting form of (17) (assuming for simplicity 
a simple cubic lattice, with lattice constant  1) 

U(R, T ) =  1 O--T ~ d i v [ D ( U )  grad U]  

where D ( U ) - ~ l - - ( 1 - - u Z ) ~ ( J n n + ~ b ~ J a b )  and the vector differentia- 
tions are taken with respect to R. A limiting equation of precisely this form 
has been 'der ived rigorously by Lebowitz, Orlandi  and Presutti [12-] in a 
case where the interaction is very weak and of very long range, there is 
only one space dimension and the initial values of U (that is, of u) lie in 
the range where D(U)  is positive. 
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